A methods to prove the Twin Prime Conjecture are given and discussed. The pictures currently cover 2 short papers. First is the original proof, sufficient to convey its workings to those familiar with the topic, but written somewhat informally, and second is an update, which furthers the formalization of the logic. The Proof works generally as follows: 1 surface is assigned to the primes such that if you choose values not on that surface you generate a prime. A 2nd surface is assigned to values 2 away from a number that are prime such that it works like the 1st surface. The proof then shows how to generate an infinite number of values that meet both surfaces criterion. Current Status: Since the development of the technique I have sought to revise it or find a simpler version all together. Recently I have made strides in this and believe I have found a much quicker path through the logic and will add it as soon as I have time, at this point it is only on paper, not in pixels. The status update version, not yet included, works generally as follows: Primes, except the number 2 are odd, but not composite. Numbers that are 2 greater than primes other than the number 2, and which are also prime, are odd, but not composite. An infinite number of pairs of odds that are not composites exist.